Synthesis and Structure of Lanthanide Sandwich Complexes with Mixed Cyclooctatetraenyl and Chelating Substituted-indenyl Ligands

HUANG, Ji-Ling^a(黄吉玲) SHEN, Xiao-Qiang^a(沈小强) LIU, Qian-Cai^a(刘乾才) QIAN, Yan-Long^{*,a}(钱延龙) CHAN, Albert Sun-Chi^{*,b}(陈新滋)

Two types of sandwich complexes $(\eta^5\text{-MeOCH}_2\text{CH}_2\text{C}_9\text{H}_6)\text{Ln}$ $(\eta^8 - C_8 H_8) (THF)_n [Ln = La (1), Nd (2), n = 0; Sm (3),$ Dy (4) and Er (5), n = 1] and $(\eta^5 - C_4 H_7 O C H_2 C_9 H_6) Ln(\eta^8 - H_7 O C H_7 C_9 H_7 C$ C_8H_8)(THF) [Ln = La (6), Nd (7), Sm (8), Dy (9) and Er (10)] were synthesized by the reactions of LnCl₃ with equivalent mole of K₂C₈H₈, followed by treatment with correspnding potassium salt of ether-substituted indenide. The molecular structures of 3 and 8 were determined by single crystal X-ray diffraction. (η⁵-MeOCH₂CH₂C₉H₆) Sm (η⁸- C_8H_8)(THF) (3) monoclinic, $p2_1/c$, a = 1.4793(3) nm, b= 0.8716(2) nm, c = 1.6149(3) nm, $\beta = 98.17(3)$, $V = 2.0612(7) \text{ nm}^3$, Z=4, R(F) = 0.0362. $C_4H_7OCH_2C_9H_6)$ Sm $(\eta^8-C_8H_8)$ (THF) (8) orthorhombic, $p2_12_12_1$, a = 0.8754(2) nm, b = 1.1000(2) nm, c = 2.3117(5) nm, V = 2.2260(8) nm³, Z = 4, R(F) = 0.0497.

Keywords Organolanthanide complexes, cyclooctatetraenyl, methoxyethyl indenyl, tetrahydrofurfuryl indenyl, crystal structure

Introduction

The cyclooctatetraenyl ligand is ubiquitous in lanthanide chemistry, and due to its stability, it is often referred to as a stabilizing backbone of organolanthanide complexes. ^{1,2} The chemistry of rare earth cyclooctatetracnyl is currently receiving renewed interest. ³⁻⁴

Results and discussion

Scheme 1 shows the general synthetic route used to prepare our sandwich organolanthanide complexes from $K_2C_8H_8$ and the ether-substituted indenyl ligands, which can be either methoxyethyl indenyl or tetrahydrofurfuryl indenyl.

All ten compounds were successfully synthesized, and finally purified by recrystallization. In all cases, the total yield was respectable.

X-ray structure determination was performed upon compounds $\bf 3$ and $\bf 8$ (see Tables 1—7). Suitable crystals

 ^a Laboratory of Organometallic Chemistry, East China University of Science and Technology, Shanghai 200237, China
 ^b Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hang Hom, Kowloon, Hong Kong, China

In recent years, cyclopentadienyl ligands with an additional donor functionality have attracted increasing interest in the organometallic chemistry of transition metals and rare earth metals. ⁵⁻¹¹ Such bidentate ligands can coordinate to the metal with the cyclopentadienyl ring and the intramolecular donor atom, increasing the stability of highly reactive complexes. Using chiral substitutents at the cyclopentadienyl ring, Marks and coworkers synthesized the chiral organolanthanocene complexes. ¹²⁻¹⁴ In this paper, we present chiral lanthanocene complexes containing the rare earth metal as the asymmetric center.

^{*} E-mail; qianling@online.sh.cn Received May 8, 2000; accepted August 18, 2000.

Project supported by the Special Funds for Major State Basic Research Projects (No. G1999064800), the National Natural Science Foundation of China (No. 29871010), and Sino-Petroleum Chemical Company (No. 29744145), and Doctoral Research Foundation by the Ministry of Education of China.

for X-ray diffraction study were grown from THF solution. The structures show expected features. The samarium is coordinated in a distorted tetrahedral configuration with the eight-membered cyclooctatetraenyl ring, the five-membered indenyl ring, two oxygens from THF and side chain group of indenyl ligand. The intramolecular coordination between oxygen atom of ligand and samarium can satisfy the co-ordination requirement of the lanthanide center. There is one THF molecule in crystal and here the co-ordination number of samarium is ten.

Mass spectra were recorded for all complexes and they are all very similar, showing a fragment ion (M⁺ – THF), relative fragments and no parent molecular ion. These indicate that the coordinations between lanthanide center and the solvent THF are not very strong. Elemental analyses showed that complexes had one molecule of THF, which was confirmed by the X-ray diffraction studies of 3 and 8. Elemental analysis, mass spectra and X-ray determination prove the proposed structure shown in Scheme 1.

Scheme 1

 $E=methoxyethyl, Ln=La (1), Nd (2), Sm (3), Dy (4), Er (5) \\ E=tetrahydrofurfuryl, Ln=La (6), Nd (7), Sm (8), Dy (9), Er (10)$

The crystal structures of complex 3 and complex 8 are shown in Fig.1 and Fig.2 respectively.

The bond lengths of Sm—C (η^8) in (Fig. 2) range from 0.2633 to 0.2685 nm (average 0.2660 nm), similar to that in (COT)Sm(C₅H₄PPh₂)(THF) 0.2683 nm¹⁵ and (COT)Sm(2,4-C₇H₁₁)(THF) 0.2660 nm. ¹⁶ The distance of Sm—C (η^5) ranges from 0.2741 to 0.2928 nm (average 0.2822 nm) shorter than that in (COT)Sm(2,4-C₇H₁₁)(THF) 0.2880 nm, similar to that in (COT)Sm (C₅H₄PPh₂) (THF) 0.2792 nm,

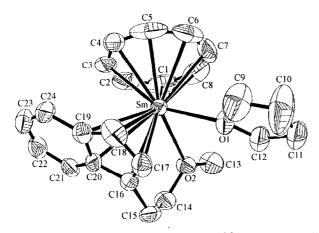


Fig. 1 Molecular structure of 3.

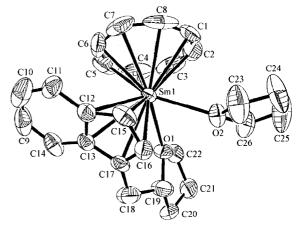


Fig. 2 Molecular structure of 8.

longer than that in $Sm(C_9H_7)_30.275$ nm.¹⁷ The Sm— $O1(\eta^5)$ bond distance is 0.2542 nm which is shorter than Sm—O2 (THF) bond 0.2616 nm. The Sm—O (THF) bond length is 0.250 nm in (COT) $Sm(2, 4-C_7H_{11})$ (THF).

The bond lengths of Sm—C (η^8) in complex 3 (Fig. 1) range from 0.2629 to 0.2689 nm (average 0.2659 nm), similar to 0.2660 nm in complex 8. The distance of Sm—C (η^5) ranges from 0.2735 to 0.2940 nm (average 0.2822 nm) which is in agreement with

0.2822 nm in complex 8. The Sm—O2(η^5) bond distance is 0.2579 nm lightly longer than 0.2542 nm in complex 8, and the Sm—O1 (THF) bond length is 0.2568 nm lightly short than 0.2616 nm in complex 8.

From above data we can see that similar substituent at indenyl has no significant effect on the bond length. From Table 4 and Table 5 it can be seen that owing to the steric effect, Sm—C12 in complex 8 and Sm—C19 in complex 3 are the longest [Sm—C(η^5)] bond in respective compound.

The distance Sm— $C(\eta^8)$ is evidently smaller than that of Sm— $C(\eta^5)$, which is due to that C_8H_8 has two negative charges while substituted indenyl only has one.

Experamental

All operations were carried out under purified argon using standard Schlenk techniques. All solvents were freshly refluxed and distilled over blue sodium-benzophenone ketyl under argon prior to use. Indene and cyclooctatetraene (Fluka) were purified by vacuum distillation from calcium hydride. Anhydrous lanthanide chloride was prepared according to the published procedure. ¹⁸ 2-Methoxyethyl indene and 2-tetrahydrofurfuryl indene were prepared as our previously reported method and reacted with potassium to obtain the salts. ¹⁹ Cyclooctatetraene potassium salt was prepared in a manner similar to the literature. ²⁰

Electron impact mass spectra were obtained at 70 eV on an HP 5989A mass spectrometer at Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, where elemental analyses were performed.

Preparation of $(\eta^5\text{-MeOCH}_2\text{CH}_2\text{C}_9\text{H}_6)\text{La}(\eta^8\text{-C}_8\text{H}_8)$ (1)

To a suspension of LaCl $_3$ (0.90 g, 3.67 mmol) in THF (30 mL) was added $K_2C_8H_8$ (3.66 mmol) in THF (6.0 mL) at room temperature and stirred for 30 min, then the solution of potassium salt of methoxyethyl indene (3.68 mmol) in THF (5.0 mL) was added at ambient temperature. The mixture was stirred for 24 h. The suspension was centrifuged and the solution was transferred to another flask, the residue was washed with THF (2 × 20 mL), removal of solvent of the combined solution provided crude product, which was purified by recrystallization in THF at $-18\,^{\circ}\mathrm{C}$. The obtained prod-

uct was pale-yellow solid (yield = 53%). In this compound there is no THF to coordinate to the metal center. Anal. $C_{20}H_{21}OLa$. Calcd: C, 57.70; H, 5.09; Found: C, 57.88; H, 5.19. m/z (%): 416 (M⁺ – THF, 86.8), 312 (La (MeOCH₂CH₂C₉H₆), 14.2), 243 (La (COT), 91.1).

Preparation of $(\eta^5\text{-MeOCH}_2\text{CH}_2\text{C}_9\text{H}_6)\text{Nd}(\eta^8\text{-C}_8\text{H}_8)$ (2)

A procedure similar to that for 1 was adopted with NdCl₃(0.85 g, 3.39 mmol) , $K_2C_8H_8$ (5.6 mL, 3.40 mmol) and potassium salt of methoxyethyl indene (5.7 mL,3.39 mmol). It provided a green crystal (yield = 65%). In this compound there is no THF to coordinate to the metal center. Anal. C_{20} H_{21} ONd. Calcd: C, 56.97; H, 5.02. Found: C, 56.75; H, 5.37. m/z (%): 419(M⁺, 1.1), 315(Nd(MeOCH₂CH₂C₉H₆), 57.6), 246 (Nd(COT), 38.1).

Preparation of $(\eta^5\text{-MeOCH}_2\text{CH}_2\text{C}_9\text{H}_6)\text{Sm}(\eta^8\text{-C}_8\text{H}_8)\text{-}$ (THF) (3)

The same procedure was followed as for the preparation of $(\eta^5\text{-MeOCH}_2\text{CH}_2\text{C}_9\text{H}_6)\,\text{Sm}(\eta^8\text{-C}_8\text{H}_8)\,\text{(THF)}$. Black-crystal was obtained in 62% yield. Anal. C₂₄-H₂₉Q₂Sm. Calcd: C, 57.67; H, 5.85. Found: C, 57.45; H,5.70. m/z(%): 429(M⁺ – THF, 11.8), 325 (Sm (MeOCH₂CH₂C₉H₆), 84.2), 256 (Dy (COT), 1.7).

Preparation of $(\eta^5\text{-MeOCH}_2\text{CH}_2\text{C}_9\text{H}_6)\text{Dy}(\eta^8\text{-C}_8\text{H}_8)$ -(THF) (4)

The procedure for 1 was again followed for preparation of (η^5 -MeOCH₂CH₂C₉H₆) Dy (η^8 -C₈H₈) (THF). Yellow crystal was got in 57% yield. Anal. C₂₄ H₂₉-O₂Dy. Calcd: C, 56.30; H, 5.71. Found: C, 56.35; H, 5.76. m/z(%): 441(M⁺ – THF, 100), 337 (Dy(MeOCH₂CH₂C₉H₆), 4.7), 268 (Dy(COT), 42.7).

Preparation of $(\eta^5\text{-MeOCH}_2\text{CH}_2\text{C}_9\text{H}_6)\text{Er}(\eta^8\text{-C}_8\text{H}_8)$ -(THF) (5)

The same procedure was used as for the preparation

of $(\eta^5\text{-MeOCH}_2\text{CH}_2\text{C}_9\text{H}_6)$ Er $(\eta^8\text{-C}_8\text{H}_8)$ (THF). Palered solid was obtained in 42% yield. Anal. C_{24} H₂₉-O₂Er. Calcd: C, 55.78; H, 5.66. Found: C,55.40; H, 5.60. m/z (%): 443 (M⁺ – THF, 100), 339 (Er(MeOCH₂CH₂C₉H₆), 7.4), 270 (Er (COT), 48.4).

Preparation of $(\eta^5-C_4H_7OCH_2C_9H_6)La(\eta^8-C_8H_8)-(THF)$ (6)

LaCl₃(1.15 g, 4.69 mmol) was suspended in THF (30 mL) and stirred 30 min, the solution of $K_2C_8H_8$ (7.9 mL, 4.70 mmol) was added by syringe at room temperature and stirred 20 min, then the solution of potassium salt of tetrahydrofurfuryl indene (10.2 mL, 4.69 mmol) was added at room temperature. The suspension solution was stirred for 24 h, then centrifuged. The residue was washed with THF (2 × 20 mL), and the combined solution was transferred to another flask and about half volume of solvent was removed. A yield of 58% pale-yellow crystals was obtained after several days at -18 °C. Anal. $C_{26}H_{31}O_{2}La$. Calcd: C, 60.70; H, 6.07. Found: C, 60.49; H, 5.97. m/z (%): 442 (M⁺ – THF, 14.5), 338(La($C_{4}H_{7}OCH_{2}C_{9}H_{6}$), 2.4), 243 (La(COT), 23.1).

Preparation of $(\eta^5-C_4H_7OCH_2C_9H_6)Nd(\eta^8-C_8H_8)-(THF)$ (7)

The procedure for **6** was followed for preparation of $(\eta^5-C_4H_7OCH_2C_9H_6)Nd(\eta^8-C_8H_8)$ (THF). Green crystal was got in 47% yield. Anal. $C_{26}H_{31}O_2Nd$. Calcd: C, 60.08; H, 6.01. Found: C, 59.66; H, 5.96. m/z (%): 445 (M⁺ – THF, 3.1), 341(Nd- $(C_4H_7OCH_2C_9H_6)$, 4.4), 246 (Nd(COT), 3.0).

Preparation of $(\eta^5-C_4H_7OCH_2C_9H_6)Sm(\eta^8-C_8H_8)-(THF)$ (8)

The same procedure was used as for the preparation of $(\eta^5-C_4H_7OCH_2C_9H_6)$ Sm $(\eta^8-C_8H_8)$ (THF). Black

crystal was obtained in a good yield. Anal. $C_{26} H_{31}$ - $O_2 Sm$. Calcd: C, 59.38; H, 5.94. Found: C,59.31; H,5.86. m/z(%): 455(M⁺ – THF, 6.5), 351(Sm- $(C_4 H_7 O C H_2 C_9 H_6)$,28.1), 256 (Sm(COT), 18.7).

Preparation of $(\eta^5-C_4H_7OCH_2C_9H_6)Dy(\eta^8-C_8H_8)-(THF)$ (9)

The same procedure was again followed as for the preparation of $(\eta^5 - C_4H_7OCH_2C_9H_6)Dy(\eta^8 - C_8H_8)-(THF)$. Yellow-crystal was obtained in 57% yield. Anal. C_{26} H_{31} O_2Dy . Calcd: C, 58.04. H, 5.81. Found: C, 57.73; H, 5.79. m/z (%): 467 (M⁺ – THF, 3.7), 363 (Dy (C₄H₇OCH₂C₉H₆), 1.1), 268 (Dy(COT), 3.4).

Preparation of $(\eta^5-C_4H_7OCH_2C_9H_6)Er(\eta^8-C_8H_8)-(THF)$ (10)

The target product (η^5 -C₄H₇OCH₂C₉H₆) Er (η^8 -C₈H₈)(THF) was obtained as pale-red solid (40%) by a procedure similar to that for **6.** Anal. C₂₆H₃₁O₂Er. Calcd; C, 57.53; H, 5.76. Found; C, 56.99; H, 5.80. m/z(%); 469 (M⁺ – THF, 78.6), 365 (Er (C₄H₇OCH₂C₉H₆), 9.0), 270 (Er(COT), 32.0).

X-ray structural determination of the complexes 3 and 8

Suitable crystals were selected and mounted in glass capillaries under argon and investigated on a Siemens P4 diffractometer using Mo $K_{\alpha}(\lambda=0.071069~\text{nm})$ radiation. The data were corrected for Lorentz and polarization and empirical absorption. The structure was solved by heavy-atom Patterson methods²¹ and expanded Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated position. The crystal data and structure refinement for complexes 3 and 8 are given in Table 1. Coordinates of non-hydrogen atoms are given in Table 2 and 3, selected bond lengths and angles are summarized in Tables 4, 5, 6 and 7, respectively.

Table 1 Crystal data and structure refinement for $\bf 3$ and $\bf 8$

complex	3	8
Empirical formul	$C_{24}H_{29}O_2Sm$	C ₂₆ H ₃₁ O ₂ Sm
Formula weight (g/mol)	499.82	525.86

		Continued
complex	3	8
Space group	$P2_I/c$	P2,2,2,
a (nm)	1.4794(3)	0.8754(2)
b (nm)	0.8716(2)	1.1000(2)
c (nm)	1.6149(3)	2.3117(5)
α (°)	90	90
β (°)	98.17(3)	90
γ (°)	90	90
$V (nm^3)$	2.0612(7)	2.2260(8)
Z	4	4
$D_c \ (\mathrm{g/cm^3})$	1.611	1.569
Absorption coefficient (mm ⁻¹)	2.864	2.656
F (000)	1004	1060
θ range (°)	2.72-24.99	1.76—25.01
Unique reflections	8373	5681
Observed reflections $(I > 3\sigma(I))$	3627	3918
Data/parameters	3627/244	3918/262
Goodness-of-fit indicator	1.001	1.130
R indices (all data)	0.0596	0.0530
Final R indices $(I > 3.00\sigma(I))$	0.0362	0.0497
Largest diff. peak and hole (e10 ⁻³ nm ⁻³)	1.465, -1.032	0.855, -1.309

Table 2 Atomic coordinates and isotropic displacement coefficients for 3

Atom	x	y .	z	$U = (10^{-2} \text{ nm}^2)$
Sm	0.7455(1)	0.0871(1)	0.9822(1)	35(1)
01	0.6298(3)	0.2898(6)	0.9190(2)	54(1)
02	0.8420(3)	0.3300(6)	0.9695(2)	49(1)
C1	0.8684(6)	-0.0220(12)	0.8936(6)	83(3)
C2	0.8752(6)	-0.1116(10)	0.9649(6)	76(3)
C3	0.8153(8)	-0.1924(9)	1.0045(5)	86(3)
C4	0.7245(8)	- 0.2187(10)	0.9915(4)	92(3)
C5	0.6506(7)	-0.1647(11)	0.9378(6)	95(4)
C6	0.6426(6)	-0.0792(11)	0.8671(6)	84(3)
C7	0.6994(8)	-0.0012(12)	0.8222(4)	92(3)
C8	0.7956(9)	0.02900(11)	0.8332(5)	94(4)
C9	0.5329(5)	0.2648(13)	0.9156(6)	103(3)
C10	0.4897(7)	0.3760(15)	0.8643(8)	147(6)
C11	0.5525(6)	0.4806(11)	0.8345(6)	89(3)
C12	0.6434(5)	0.4138(9)	0.8660(5)	72(2)
C13	0.8809(5)	0.3789(10)	0.8969(4)	74(2)
C14	0.8923(5)	0.3992(8)	1.1043(4)	59(2)
C15	0.8291(5)	0.4120(8)	1.1089(4)	60(2)
C16	0.7793(4)	0.2668(8)	1.1219(3)	43(2)
C17	0.6835(4)	0.2516(10)	1.1081(3)	52(2)
C18	0.6586(4)	0.1047(10)	1.1269(3)	61(2)
C19	0.7390(4)	0.0243(9)	1.1602(3)	50(2)
C20	0.8138(4)	0.1257(8)	1.1555(3)	40(1)
C21	0.9041(4)	0.0775(8)	1.1840(3)	48(2)
C22	0.9172(5)	-0.0647(9)	1.2189(4)	64(2)
C23	0.8442(6)	-0.1602(10)	1.2279(4)	71(2)
C24	0.7566(6)	-0.1190(9)	1.1990(4)	66(2)

Table 3 Atomic coordinates and isotropic displacement coefficients for 8

Atom	\boldsymbol{x}	y	z	$U { m eq} \ (10^{-2} \ { m nm}^2)$
Sm	0.6436(1)	0.5695(1)	0.1307(1)	33(1)
01	0.6001(8)	0.7903(6)	0.1029(3)	44(2)
02	0.8150(9)	0.7006(8)	0.1993(3)	53(2)
C1	0.5905(25)	0.4859(20)	0.2355(6)	84(6)
C2	0.4882(24)	0.5714(20)	0.2308(6)	82(5)
C3	0.3865(22)	0.6076(13)	0.1914(10)	93(7)
C4	0.3395(13)	0.5700(15)	0.1381(9)	82(5)
C5	0.3759(21)	0.4745(22)	0.1009(8)	97(7)
C6	0.4770(24)	0.3749(19)	0.1076(7)	93(7)
C7	0.5818(24)	0.3359(13)	0.1503(9)	92(6)
C8	0.6359(21)	0.3847(16)	0.2036(9)	90(6)
C9	0.6134(15)	0.4144(17)	-0.0501(6)	78(5)
C10	0.6848(17)	0.3143(16)	-0.0240(8)	82(5)
C11	0.7843(15)	0.3272(11)	0.0194(6)	53(3)
C12	0.8192(12)	0.4463(11)	0.0403(4)	44(2)
C13	0.7489(11)	0.5503(10)	0.0139(4)	40(2)
C14	0.6442(15)	0.5304(13)	-0.0318(4)	58(3)
C15	0.9223(14)	0.4901(12)	0.0832(5)	51(3)
C16	0.9197(13)	0.6180(11)	0.0798(5)	46(3)
C17	0.8146(11)	0.6558(10)	0.0389(4)	42(2)
C18	0.7722(18)	0.7839(13)	0.0218(6)	63(3)
C19	0.7166(16)	0.8581(12)	0.0696(5)	60(3)
C20	0.6463(18)	0.9815(10)	0.0576(5)	57(3)
C21	0.5348(17)	0.9992(11)	0.1053(6)	63(3)
C22	0.4771(14)	0.8727(10)	0.1172(5)	52(3)
C23	0.9465(19)	0.6546(20)	0.2282(7)	98(6)
C24	0.9439(30)	0.7019(25)	0.2863(7)	132(9)
C25	0.8457(26)	0.8067(21)	0.2860(8)	121(8)
C26	0.7661(18)	0.8064(13)	0.2324(6)	69(4)

Table 4 Selected bond lengths of complex $3 (10^{-1} \text{ nm})$

Table 5 Selected bond lengths of complex 8 (10⁻¹ nm)

Bonds	Distance	Bonds	Distance	Bonds	Distance	Bonds	Distance
Sm01	2.569(4)	Sm02	2.578(4)	Sm01	2.542(7)	Sm02	2.615(8)
Sm-C1	2.645(7)	Sm—C3	2.651(8)	Sm—C1	2.633(12)	Sm—C3	2.685(13)
Sm—C2	2.629(7)	Sm—C4	2.690(9)	Sm—C2	2.683(13)	Sm—C4	2.668(12)
Sm—C5	2.648(8)	Sm—C6	2.658(7)	SmC5	2.658(14)	SmC6	2.645(13)
SmC7	2.689(7)	Sm—C8	2.665(6)	Sm—C7	2.664(13)	SmC8	2.641(11)
SmC16	2.735(5)	SmC17	2.750(6)	SmC12	2.928(12)	SmC13	2.861(11)
SmC18	2.827(7)	Sm—C19	2.940(8)	SmC15	2.814(10)	SmC16	2.741(10)
SmC20	2.857(7)	O1C9	1.443(8)	Sm C17	2.766(9)	O1C19	1.480(13)
O1—C12	1.410(8)	O2C13	1.442(7)	O1C22	1.446(12)	O2—C23	1.420(2)
O2-C14	1.442(7)			O2—C26	1.458(14)		

Table 6 Selected bond angles (°) for complex 3

Table 0	Selected bond angles () for complex 3				
Atoms	Angle	Atoms	Angle		
O1-Sm-O2	75.46(14)	O1-Sm-C2	150.0(2)		
O2-Sm-C2	96.3(2)	O1-Sm-C1	120.2(3)		
O2-Sm-C1	79.7(2)	O2-Sm-C5	159.6(2)		
O1-Sm-C5	99.5(3)	O2-Sm-C3	123.7(3)		
O1-Sm-C3	155.7(2)	O1-Sm-C6	79.3(2)		
O2-Sm-C6	131.3(3)	O1-Sm-C8	91.6(3)		
O2-Sm-C8	81.7(2)	O2-Sm-C7	103.1(3)		
O1-Sm-C7	75.6(2)	O2-Sm-C4	152.6(3)		
O1-Sm-C4	128.9(2)	O1-Sm-C16	88.1(2)		
O2-Sm-C16	63.69(15)	C2-Sm-C16	114.5(2)		
C1-Sm-C16	126.4(2)	C5-Sm-C16	136.5(2)		
C3-Sm-C16	113.1(2)	C6-Sm-C16	155.3(2)		
C8-Sm-C16	144.3(3)	C7-Sm-C16	161.5(2)		
C4-Sm-C16	122.0(2)	O1-Sm-C17	70.2(2)		
O2-Sm-C17	83.0(2)	C2-Sm-C17	138.4(2)		
C1-Sm-C17	156.1(2)	C5-Sm-C17	114.4(2)		
C3-Sm-C17	122.9(3)	C6-Sm-C17	125.7(2)		
C8-Sm-C17	158.7(3)	C7-Sm-C17	142.6(3)		
C4-Sm-C17	114.9(2)	C14-O2-Sm	120.3(3)		
C13-O2-Sm	126.6(4)				

Table 7 Selected bond angles (°) for complex 8

Table /	Science Born	angles () for e	ompiex o
Atoms	Angle	Atoms	Angle
O1-Sm-O2	73.3(2)	O1-Sm-C1	122.7(6)
O2-Sm-C1	74.7(4)	O1-Sm-C8	153.3(5)
O2-Sm-C8	93.0(5)	O2-Sm-C6	152.3(5)
01-Sm-C6	129.7(6)	O2-Sm-C5	151.6(6)
O1-Sm-C5	100.2(5)	O1-Sm-C7	159.1(5)
O2-Sm-C7	123.0(6)	01-Sm-C4	82.2(3)
O2-Sm-C4	122.2(5)	O2-Sm-C2	76.4(4)
O1-Sm-C2	97.7(5)	O2-Sm-C3	94.5(5)
O1-Sm-C3	81.8(4)	O1-Sm-C16	80.6(3)
O2-Sm-C16	69.3(3)	C1-Sm-C16	128.3(5)
C8-Sm-C16	116.5(5)	C6-Sm-C16	123.8(5)
C5-Sm-C16	138.0(5)	C7-Sm-C16	116.1(4)
C4-Sm-C16	155.1(4)	C2-Sm-C16	144.7(5)
C3-Sm-C16	158.9(4)	O1-Sm-C17	63.8(3)
O2-Sm-C17	88.0(3)	C1-Sm-C17	157.2(5)
C8-Sm-C17	140.2(5)	C6-Sm-C17	114.9(4)
C5-Sm-C17	114.4(4)	C7-Sm-C17	124.9(4)
C4-Sm-C17	126.0(4)	C2-Sm-C17	158.9(5)
C3-Sm-C17	143.2(5)	C16-Sm-C17	29.1(3)
C22-O1-C19	108.5(9)	C22-O1-Sm	130.7(6)
C19-O1-Sm	120.7(6)	C23-O2-C26	105.9(10)
C23-O2-Sm	123.5(10)	C26-O2-Sm	126.2(7)

References

- Schumann, H.; Meese-Marhtscheffel, J. A.; Esser, L. Chem. Rev. 1995, 95, 865.
- 2 Bringmann, G.; Harmsen, S.; Schupp, O.; Walter, R. in "Selective Reactions of Metal-Activated Molecules", Eds.: Werner, H.; Sundermeyer, J., Vieweg, Brannschweig, 1995, p. 137.
- 3 Bringmann, G.; Walter, R.; Weirich, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 977.
- 4 Bringmann, G.; Hartung, T. Tetrahedron 1993, 49, 7891.
- 5 Huang, Q.; Qian, Y.; Xie, W.; Shou, M.; Tang, Y.
 J. Inorg. Chem., 1985, 166 (in Chinese).
- 6 Huang, Q.; Qian, Y.; Li, G.; Tang, Y. Transit. Metal Chem. 1990, 15, 483.
- 7 Qian, C.; Xie, Z.; Huang, Y. J. Organomet. Chem. 1987, 323, 286.
- 8 Herrmann, W. A.; Anwander, R.; Munck, F. C.; Scherer, W. Chem. Ber. 1993, 126, 331.
- 9 Okuda, J. Comm. Inorg. Chem. 1994, 16, 185.
- Jutzi, P.; Dahlhaus, J. Coord. Chem. Rev. 1994, 137, 179.
- Wang, B.; Deng, D.; Qian, C. New J. Chem. 1995, 19, 515.
- 12 Conticello, V. P.; Brard, L.; Giardello, M. A.; Tsuji, Y.; Sabat, M.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 2761.
- 13 Gagne, M. R.; Brard, L.; Conticello, V. P.; Giardello, M. A.; Stern, C. L.; Marks, T. J. Organometallics 1992, 11, 2003.
- 14 Giardello, M. A.; Conticello, V. P.; Brard, L.; Sabat, M.; Rheingold, A. L.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10212.
- 5 Visseaux, M.; Dormond, A.; Kubicki, M. M.; Moise, C. J. Organomet. Chem. 1992, 433, 95.
- 16 Jin, J.; Jin, S.; Jin, Z.; Chen, W. J. Chem. Soc., Chem. Commun. 1991, 19, 1328.
- 17 Atwood, J. L.; Burns, J. H.; Laubereau, P. G. J. Am. Chem. Soc. 1973, 95, 1830.
- 18 Taylor, M. D.; Carter, C. P. J. Inorg. Nucl. Chem. 1962, 24, 387.
- 19 Huang, Q.; Qian, Y. Synthesis 1987, 910.
- Hodgson, K. O.; Mare, F.; Starks, D. F.; Steritwieser,
 A. J. Am. Chem. Soc. 1973, 95, 8650.
- 21 Sheldrick, G.M., SHELXTL-PLUS, Siemens Analytical Instruments Inc. Madison, WI, 1990.

(E200005107 JIANG, X.H.; DONG, L.J.)